[1] Gonzalez-Villoria AM,Valverde-Garduno V. Antibiotic-ResistantAcinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen[J].Pathog, 2016, 2016:7318075. [2] Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii[J].New Microbiol, 2014, 37(2):119~127. [3] Munoz-Price LS, Fajardo-Aquino Y, Arheart KL, et al. Aerosolization of Acinetobacter baumannii in a trauma ICU[J].Crit Care Med, 2013, 41(8):1915~1918. [4] Tomaras AP, Dorsey CW, Edelmann RE, et al. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system[J].Microbiology, 2003, 149(12):3473~3484. [5] Mc Queary CN, Actis LA. Acinetobacter baumannii biofilms: variations among strains and correlations with other cell properties[J].Microbiol, 2011, 49(2):243~250. [6] Tomaras AP, Flagler MJ, Dorsey CW, et al .Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology[J].Microbiology, 2008, 154(11):3398~3409. [7] Cerqueira GM, Kostoulias X, Khoo C, et al. A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway [J].Infect Dis, 2014, 210(1):46~55. [8] De Gregorio E,Del Franco M,Martinucci M, et al. Biofilm-associated protein: news from Acinetobacter[J].BMC Genomics, 2015, 14(16):933. [9] Choi AH, Slamti L, Avci FY, et al. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-NDeacetylglucosamine, which is critical for biofilm formation[J].Bacteriol, 2009, 191:5953~5963. [10] Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells[J].Infect Immun, 2009, 77(8): 3150~3160. [11] Doi Y,Murray GL,Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options[J].Semin Respir Crit Care Med, 2015, 36(1):85~98. [12] Bentancor LV, Camacho-Peiro A, Bozkurt-Guzel C, et al. Identification of Ata, a multifunctional trimeric autotransporter of Acinetobacter baumannii[J].Bacteriol, 2012, 194(15):3950~3960. [13] Rodriguez-Bano J, Marti S, Soto S, et al. Biofilm formation in Acinetobacter baumanii: associated features and clinical implications[J].Clin Microbiol Infect, 2008, 14(3): 276~278. [14] Vijayakumar S,Rajenderan S,Laishram S, et al. BiofilmFormationandMotilityDependon theNatureof theAcinetobacterbaumanniiClinicalIsolates [J].Front Public Health, 2016, 24(4):105. [15] Lee HW, Koh YM, Kim J, et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumanii to form biofilm and adhere to epithelial cell surfaces[J].Clin Microbiol Infect, 2008, 14(1): 49~54. [16] Sanchez CJ, Mende K, Beckius ML, et al. Biofilm formation by clinical isolates and the implications in chronic infections[J].BMC Infect Dis, 2013, 13: 47. [17] De Breij A, Gaddy J, Van der Meer J, et al. CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606(T) to human airway epithelial cells and their inflammatory response[J].Res Microb, 2009, 160(3):213~218. [18] Brossard KA, Campagnari AA. The acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells[J].Infect Immun, 2012, 80(1):228~233. [19] Smani Y, Dominguez-Herrera J, Pachón J. Association of the outer membrane protein Omp33 with fitness and virulence of acinetobacter baumannii[J].Infect Dis, 2013, 208(10):1561~1570. [20] Zhang D, Xia J, Xu Y, et al. Biological features of biofilm-forming ability of acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia[J].Clin Exp Med, 2016, 16(1):73~80. [21] Choi CH, Lee JS, Lee YC, et al. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells[J]. BMC Microbiol, 2008, 8:216. [22] Rumbo C, Tomás M, Fernández Moreira E, et al. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells[J].Infect Immun. 2014, 82(11):4666~4680. [23] Stahl J,Bergmann H,Gttig S,et al. Acinetobacter baumannii virulence is mediated by the concerted action of three phospholipases D[J].PLoS One,2015, 10(9):e0138360. [24] Gaddy JA, Arivett BA, McConnell MJ, et al. Role of acinetobactin-mediated iron acquisition functions in the interaction of acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice[J].Infect Immun, 2012, 80(3):1015~1024. [25] Zimbler D L, Penwell W F, Gaddy J A, et al. Iron acquisition functions expressed by the human pathogen Acinetobacter baumannii[J].Biometals, 2009, 22(1): 23~32. [26] Dorsey CW, Beglin MS, Actis LA. Detection and analysis of iron uptake components expressed by Acinetobacter baumannii clinical isolates[J].Clin Microbiol, 2003, 41(9):4188~ 4193. [27] Mortensen BL,Skaar EP. The contribution of nutrient metalacquisition and metabolism to acinetobacter baumannii survival within the host[J].Front Cell Infect Microbiol,2013, 3:95. [28] Aranda J, Bardina C, Beceiro A, et al. Acinetobacter baumannii Rec protein A in repair of DNA damage, antimicrobial resistance, general stress response and virulence[J].Bacteriol, 2011, 193(15):3740~3747.